
repeat

end SHORT - PATHS 

Overall run time of algorithm is O ((n+|E|) log n)

Example:

********

Chapter-4

Dynamic programming

4.1 The General Method

Dynamic Programming: is an algorithm design method that can be used when the solution 

to a problem may be viewed as the result of a sequence of decisions.

The shortest path

To find a shortest path in a multi-stage graph



Apply the greedy method 

   the shortest path from S to T 

         1 + 2 + 5 = 8 

4.2 Principle of optimality

Suppose that in solving a problem, we have to make a sequence of decisions D1, D2… Dn. If 

this sequence is optimal, then the last k decisions, 1 k n must be optimal. 

Ex: The shortest path problem

If i1, i2… j is a shortest path from i to j, then i1, i2… j must be a shortest path from i1to j

If  a  problem can  be described  by a  multistage  graph,  then  it  can be solved  by dynamic 

programming.

4.2.1 Forward approach and backward approach

Note  that  if  the recurrence  relations  are  formulated  using  the forward approach then  the 

relations are solved backwards. i.e., beginning with the last decision

On the other hand if  the relations  are formulated using the backward approach,  they are 

solved forwards.

To solve a problem by using dynamic programming

• Find out the recurrence relations.

• Represent the problem by a multistage graph.

Backward chaining vs. forward chaining

Recursion is sometimes called “backward chaining”: start with the goal you want choosing 

your sub goals on an as-needed basis.

• Reason backwards from goal to facts (start with goal and look for support for it)

Another option is “forward chaining”: compute each value as soon as you can,  in 

hope that you’ll reach the goal.

• Reason forward from facts to goal (start with what you know and look for things you 

can prove)

Using forward approach to find cost of the path:

Cost ( i, j) = min {c(j, l ) + cost(i+1, l)}



L Vi+1ϵ

<j, l>  Eϵ

Algorithm 4.1 Multistage graph pseudo code corresponding to the forward approach  Using 

backward approach:

Let bp (i, j) be a minimum cost path from vertex s to vertex j in Vi Let bcost (i,j) be cost of 

bp(i, j). The backward apporach to find minimum cost is:

bcost (i, j) = min {bcost (i-1,l ) +c(l ,j)}

l Vi+1ϵ

<j,l>  Eϵ

Since bcost (2,j) = c(1,j) if <1,j>  E and bcost (2,j) = ∞ϵ

if <i,j>  E, bcost (i,j) can be computed using above formula.ϵ

Algorithm Bgraph(G,k,n,p)

{

bcost[1]:=0.0;

For j:=2 to n do

{ //compute bcost[j].

Let r be such that <r,j> is an edge of G and bcost[r] + c[r,j] is mimimum;

bcost[j]:=bcost[r]+c[r,j];

d[j]:=r;

}

//Find a minimum-cost path

P[1]:=1;p[k]:=n;

For j:=k-1 to 2 do p[j]:= d[p[j+1]];

}

Algorithm: 4.1.1 Multi-stage graph pseudo code for corresponding backward approach.

The shortest path in multistage graphs:



 The greedy method cannot be applied to this case:  (S, A, D, T)    1+4+18 = 23.

 The real shortest path is:

            (S, C, F, T)    5+2+2 = 9.

Dynamic programming approach (forward approach)

d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

d(A,T) = min{4+d(D,T), 11+d(E,T)}

  = min{4+18, 11+13} = 22.

d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)}

              = min{9+18, 5+13, 16+2} = 18.



d (C, T) = min{ 2+d(F, T) } = 2+2 = 4

d (S, T)  = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

              = min{1+22, 2+18, 5+4} = 9.  

The above way of reasoning is called backward reasoning.

Backward approach (forward reasoning):

            d(S, A) = 1

d(S, B) = 2

d(S, C) = 5

d(S,D) = min{d(S,A)+d(A,D),d(S,B)+d(B,D)}

            = min{ 1+4, 2+9 } = 5

d(S,E) = min{d(S,A)+d(A,E), d(S,B)+d(B,E)}

            = min{ 1+11, 2+5 } = 7

d(S,F) = min{d(S,B)+d(B,F), d(S,C)+d(C,F)}

           = min{ 2+16, 5+2 } = 7

d(S,T) = min{d(S, D)+d(D, T), d(S,E)+d(E,T), d(S, F)+d(F, T)}

            = min{ 5+18, 7+13, 7+2 } 

            = 9

4.3 Multistage Graphs

Multistage  graph problem  is  to  determine 

shortest  path  from source to destination. 

A  multistage  graph G=(V,E)  is  a  directed 

graph  in  which  the vertices  are  partitioned 

into  k>=2  disjoint sets Vi, 1<=i<=k. 

The  vertex  s  is source  and  t  is  the  sink. 

Let c(i,j) be the cost of edge <i, j>. The cost of a path from s to t is the sum of costs of the 

edges on the path. The multistage graph problem is to find a minimum-cost path from s to t.

A  dynamic  programming  formulation  for  a  k-stage  graph  problem  is  obtained  by  first 

noticing that every s to t path is the result of a sequence of k-2 decisions. 

The ith decision involve determining which vertex in Vi+1, 1<=i<=k-2, is on the path. It is 

easy to see that principal of optimality holds.

Let p(i,j) be a minimum-cost path from vertex j in Vi to vertex t. Let cost(i,j) be the cost of 

this path.



The time for the for loop of line 7 is Θ(|V| + |E|), and the time for the for loop of line 

16 is Θ(k), Hence, the total time is Θ(|V| + |E|).

The backward trace from vertex 1 to n also works.

The algorithm also works for the edges crossing more than 1 stage.

4.4 All-pairs Shortest Paths

Let G=(V,E) be a directed graph with n vertices. The cost I,j=0 if i=j , cost I,j is ∞ if i≠j, <i,j> 

not blelongs E 

The cost i,j>0 iif i≠j <i,j> not belongs E 

All pairs shortest path problem is to determine the matrix ‘A’ such that A(i,j) is the length of 

the shortest  path from itoj.  The matrix  ‘A’ can be obtained by solving ‘n’ single source 

problems by using shortest path algorithm.     



Idea

Label the vertices with integers 1..n

Restrict the shortest paths from i to j to consist of vertices 1..k only (except i and j)

Iteratively relax k from 1 to n.

Find shortest distance from i to j using vertices 1...k 

Example

                  i=4, j=5,k=0                                 i=4, j=5,k=1

                   i=4, j=5,k=2                                   i=4, j=5,k=3



4.4.1 Shortest Path: Optimal substructure

Let G be a graph, Wij be the length of edge (i, j), where 1<=i, j<= n, and d(k)ij be the length of 

the shortest path between nodes  I  and  j,  for 1<=  i,  j,  k<=n,  without passing through any 

nodes numbered greater than k.

Recurrence:

At d=1

d1  (1,1)   = min{d0 (1,1), d0 (1,1,)+ d0 (1,1,)} = 0



d1  (1,2)     = min{d0 (1,2), d0  (1,1)+d0  (1,2)} = min{4, 0+4}=4

d1  (1,3)   = min {d0 (1,3), d0  (1,1)+d0 (1,3)} = min{11,0+11} = 11

d1  (2,1)   = min{d0 (2,1), d0 (2,1)+ d0 (1,1)}

d1  (2,2)   = min{d0 (2,2), d0 (2,1)+d0 (1,2)} = 0

d1  (2,3)   = min{d0   (2,3), d0  (2,1)+d0 (1,3)}= min{2,6+11}=2

d1  (3,1)    = min{d0 (3,1), d0  (3,1) + d0  (1,1)} = min{3, 3+0} = 3

d1  (3,2)  =  min{d0  (3,2), d0 (3,1)+d0 (1,2)}= min {∞, 3+4}=7

d1  (3,3)  = 0

At d=2

d2  (1,1)    = min{d1 (1,1), d1 (1,2)+ d1 (2,1,)} = min{ 0, ∞} = 0

d2  (1,2)    = min{d1 (1,2), d1  (1,2)+d1  (2,2)} =4

d2  (1,3)   = min {d1 (1,3), d1  (1,2)+d1 (2,3)} = 6

d2  (2,1)   = min{d1 (2,1), d1 (2,2)+ d1 (2,1)} =6

d2  (2,2)   = min{d1 (2,2), d1 (2,1)+d1 (2,2)} = min{0, 0+0} = 0

d2  (2,3)   = min{d1   (2,3), d1  (2,1)+d1(2,3)}= 2

d2  (3,1)    = min{d1 (3,1), d1  (3,2) + d1  (2,1)} = min{3, 7+6} = 3

d2  (3,2)   =  min {7, 7+0}=7

d2 (3,3)  = 0

At d=3

d3  (1,1) =  min{ 0, somevalue} = 0

d3  (1,2)    = min{4,6+0}=4

d3 (1,3)   = min {6,6+0)} = 6

d3 (2,1)   = min{6, 2+3}=5

d3 (2,2)   = 0

d3  (2,3)   = min{2,2}=2

d3  (3,1)    = min{3, 3+0} = 3

d3 (3,2)   =  min {7, 7+0}=7

d3 (3,3)  = 0



Algorithm 4.2 All-Pairs Shortest Paths algorithm

• Find the distance between every pair of vertices in a weighted directed graph G.

• We can make  n calls  to  Dijkstra’s  algorithm (if  no negative  edges),  which  takes 

O(nmlog n) time.

• Likewise, n calls to Bellman-Ford would take O (n2m) time.

• We can  achieve  O (n3)  time  using  dynamic  programming  (similar  to  the  Floyd-

Warshall algorithm).

Example for all pairs shortest path:

   



  

Note that on the last  pass no improvements could be found for D(5) over D(4).   The final 

matrices D(5) and P(5) indicate, for instance, that the shortest path from node 1 to node 5 has 

length d(1,5) = 8 units and that this shortest path is the path {1, 3, 4, 2, 5}. 

To identify that shortest path, we examined row 1 of the P(5) matrix. Entry p5 says that the 

predecessor node to 5 in the path from 1 to 5 is node 2; then, entry p5  (1, 2) says that the 

predecessor node to 2 in the path from 1 to 2 is node 4; similarly, we backtrack the rest of the 

path by examining p5(1, 4) (= 3) and p5(1, 3) = 1. In general, backtracking stops when the 

predecessor node is the same as the initial node of the required path. 

For another illustration, the shortest path from node 4 to node 3 is d (4, 3) = 8 units long and 

the path is {4, 2, 1, 3}. The predecessor entries that must be read are, in order, p5 (4, 3) = 1, p5 

(4, 1) = 2, and finally p5(4, 2) = 4--at which point we have "returned" to the initial node. 

4.5 Single-Source Shortest Paths

4.5.1 General Weights

Let  distk[u]  be the length of a  shortest  path from the source vertex  v  to  vertex  u 

containing at most k edges.



Algorithm 4.3 Bellman and ford algorithm to compute shortest paths

Bellman and ford algorithm: Works even with negative-weight edges

It must assume directed edges (for otherwise we would have negative-weight cycles)

Iteration i finds all shortest paths that use i edges.

Running time: O(nm).

It Can be extended to detect a negative-weight cycle if it exists.

4.6 Optimal Binary Search Trees

Definition: Binary search tree (BST) A binary search tree is a binary tree; either it is empty or 

each node contains an identifier and

1. All identifiers in the left sub tree of T are less than the identifiers in the root node T.

2. All the identifiers the right sub tree is greater than the identifier in the root node T.

3. The right and left sub tree are also BSTs.

 Algorithm for searching an identifier in the tree ‘T’

Procedure SEARCH (T X I)

// Search T for X, each node had fields LCHILD, IDENT, RCHILD//

// Return address I pointing to the identifier X// //Initially T is pointing to tree.  

//ident(i)=X or i=0 

//I ß T

While I ≠  0 do

   case : X < Ident(i) : I ßLCHILD(i)

           : X = IDENT(i) : RETURN i

  : X > IDENT(i) : I ß RCHILD(i)

   end case

repeat

end SEARCH

Optimal Binary Search trees – Example



If each identifier is searched with equal probability the average number of comparisons for 

the above tree is 1+2+2+3+4/5 = 12/5.

 

• Let us assume that the given set of identifiers are {a1, a2...an} with a1<a2<…….<an.

• Let Pi be the probability with which we are searching for ai.

• Let Qi be the probability that identifier  x being searched for is such that ai<x<ai+1 

0≤i≤n, and a0=-∞ and an+1=+∞.

• Then ∑Qi is the probability of an unsuccessful search.

             0≤i≤ n                             

             ∑P(i) + ∑Q(i) = 1.    Given the data,   

             1≤i≤n    0≤i≤n               

let us construct one optimal binary search tree for (a1……….an).

• In place of empty sub tree, we add external nodes denoted with squares. 

• Internet nodes are denoted as circles.

4.7 Construction of optimal binary search trees

i) A BST with n identifiers will have n internal nodes and n+ 1 external node. 

ii)Successful search terminates at internal nodes unsuccessful search terminates at external    

      nodes.

iii)If a successful search terminates at an internal node at level L, then L iterations of the    

     loop in the algorithm are needed. 

iv)Hence the expected cost contribution from the internal nodes for ai is P (i) * level (ai).

v)Unsuccessful search terminates at external nodes i.e. at i = 0. 

vi)The  identifiers  not  in  the  binary  search  tree  may  be  partitioned  into  n+1  equivalent 

classes 

Ei  0≤i≤n.

Eo contains all X such that X≤ai



Ei contains all X such that a<X<=ai+1   1≤i≤n

En contains all X such that X > an

For identifiers in the same class Ei, the search terminates at the same external node. If the 

failure node for Ei is at level L, then only L-1 iterations of the while loop are made 

∴ The cost contribution of the failure node for Ei is Q (i) * level (Ei )   -1)

Thus the expected cost of a binary search tree is:

    ∑P(i) * level (ai)  + ∑Q(i) * level(Ei) – 1)  ……(2)

   1≤i≤n                      0≤i≤n    

An optimal binary search tree for {a1……., an} is a BST for which (2) is minimum.

Example: Let {a1, a2, a3} ={do, if, stop}

    

       
           

          

With equal probability P (i) = Q(i) = 1/7.

Let us find an OBST out of these.

           Cost(tree a) = ∑P(i)*level a(i) + ∑Q(i)*level (Ei) -1

                      1≤i≤n                  0≤i≤n

                      (2-1)      (3-1)          (4-1)         (4-1)

         =1/7[1+2+3 + 1    + 2 + 3   + 3]     = 15/7

Cost (tree b) =17[1+2+2+2+2+2+2] =13/7



Cost (tree c) =cost (tree d) =cost (tree e) =15/7

∴  tree b is optimal.

If P(1) =0.5 ,P(2) =0.1, P(3) =0.005 , Q(0) =.15 , Q(1) =.1, Q(2) =.05 and Q(3) =.05 

find the OBST.

Cost (tree a) = .5 x 3 +.1 x 2 +.05 x 3 +.15x3 +.1x3 +.05x2 +.05x1 = 2.65

Cost (tree b) =1.9 , Cost (tree c) =1.5 ,Cost (tree d) =2.05 , Cost (tree e) =1.6.

Hence tree C is optimal.

To  obtain  a  OBST using  Dynamic  programming  we  need  to  take  a  sequence  of 

decisions regard. The construction of tree.

First decision is which of ai is being as root.

Let us choose ak as the root. Then the internal nodes for a1,…….,ak-1 and the external 

nodes  for  classes  Eo,E1,……,Ek-1 will  lie  in  the  left  sub  tree  L  of  the  root.  The 

remaining nodes will be in the right sub tree R.

Define 

Cost (L) =∑P(i)* level(ai) + ∑Q(i)*(level(Ei )-1)

  1≤i≤k                   0≤i≤k

Cost(R) =∑P(i)*level(ai) + ∑Q(i)*(level(Ei )-1)

              k≤i≤n                   k≤i≤n

Tij be the tree with nodes ai+1,…..,aj and nodes corresponding to Ei,Ei+1,…..,Ej.

Let W (i, j) represents the weight of tree Tij.

W(i, j)=P(i+1) +…+P(j)+Q(i)+Q(i+1)…Q(j)=Q(i) +∑j [Q(l)+P(l)]

                                                                                            l=i+1

The expected cost of the search tree in (a) is (let us call it T)  is

 P(k) + cost(l) + cost(r) + W(0,k-1) + W(k, n)

W  (0,  k-1)  is  the  sum  of  probabilities  corresponding  to  nodes  and  nodes  belonging  to 

equivalent classes to the left of ak.

W (k, n) is the sum of the probabilities corresponding to those on the right of ak. 

       ak

L             R

(a) OBST with root ak

4.8 0-1 Knapsack 

If we are given ‘n’ objects and a knapsack or a bag, in which the object ‘ i’ has weight ‘w  i’ is 

to be placed, the knapsack has capacity ‘N’ then the profit that can be earned is p i  x i. The 

objective is to obtain filling of knapsack with maximum profits is to 



n=no of objects i=1,2,….n.; m=capacity of the bag ; 

wi =weight of object I; Pi =profit of the object i.

           

In solving 0/1 knapsack problem two rules are defined to get the solution.

Rule1: When the weight of object(s) exceeds bag capacity than discard that pair(s).

Rule2: When (pi,wi) and (pj,wj) where pi ≤pjand wi ≥wjthan (pi,wi) pair will be discarded. This 

rule is called purging or dominance rule.Applying dynamic programming method to calculate 

0/1 knapsack problem the formula equation      is: S1
i ={(P,W)|(P-pi , W-wi ) є Si }

Rule  1: 

Applying rule to the above pairs, where weight exceeds knapsack capacity discards the pair. 

In the above (7, 7), (8,9) pairs are discarded.

Rule 2(purging or dominance): Applying rule to the remaining pairs after discarded pairs i.e 

on 6 pairs

Pairs 3≤5 and 5≥4 pairs in above shown so that pair (3,5) pair discarded.

So the solution pair(s) is (6,6) ;

Solution vector: (p1,p2,p3)=(1,2,5)=>(p1,p3)=(1,5)

(w1,w2,w3)=(2,3,4)=>(w1,w3)=(2,4) 

The solution vector is (1,0,1)



   

4.9 Traveling Salesperson Problem

A salesperson would like to travel from one city to the other (n–1) cities just once then back 

to the original city, what is the minimum distance for this travel?

The brute-and-force method is trying all  possible (n–1)! Permutations  of (n–1) cities  and 

picking the path with the minimum distance.

There  are  a  lot  of  redundant  computations  for  the  brute-and-force  method  such  as  the 

permutations of 6 cities are 1234561, …, 1243561, …., 1324561, …, 1342561, …, 1423561, 

…, 1432561, …

The function g(1,V-{1}) is the length of an optimal salesperson tour. From the principal of 

optimality it follows that g (1, V-[1}) = min2≤k≤n {c1k + g{k,V-{1,k})}

Generalizing above one we obtain (for I not belong S) g (i, S) = minjE s{ciJ+ g(j, S-{j})}

The method computes from vertex 1 backward to the other vertices then return to vertex 1.

Let g(i,S) be the length of a shortest path starting at vertex i, going through all vertices in S, 

and terminating at vertex 1.

The function g(1,V-{1}) is the length of an optimal salesperson tour. From the principal of 

optimality it follows that 

Eqn. 1 solved for g(1,V-{1}) if we know g (k,V-{1,k}) for all choices of k. The g values can 

be obtained by using eqn. 2 clearly, g (i, ø) = ci1, 1≤i ≤n. Hence we use g (i, S) for all S size 

1.then g (i, S) for S=2 and so on.

Example



4.10 Flow shop scheduling

Let n be the no. of jobs, each may be requiring m task.

Let T1i, T2i… Tmi where i=1 to n to be performed where Tmi is the Ith job of mth task. The task 

‘Tji to  be  processed  on  the  processor  ‘Tj’  where  j=1,2,………m.  The  time  required  to 

complete the task Tji is tji . 

A schedule for ‘n’ jobs is an assignment of tasks to the time intervals on the processors.

Constraints: No two processors may have more than one task assign to it in anytime interval.

Objective: The objective of flow shop scheduling is to find the optimal finishing time (OFT) 

of the given schedule ‘S’.

(Optimal Finishing Time OFT schedule ‘S’)

Mean flow time for the schedule ‘S’ is

 
 

There are 2 possible scheduling:



1) Non-preemptive schedule:-it is in which the processing of a task on any processor is not 

terminate until the task is completed.

2)  Preemptive  scheduling:-It  is  in  which  the  processing  of  a  task  on  any  processor  is 

terminated before the task is completed.

Problem:

2 0   p1 

j = 3 3   p2

5 2   p3 

j=schedule t11

P1, p2, p3= processors or tasks of jobs

T11 –first job of the first task

***************


